Multiscattering-enhanced absorption spectroscopy.

نویسندگان

  • Volodymyr B Koman
  • Christian Santschi
  • Olivier J F Martin
چکیده

An original scheme for sensitive absorption measurements, particularly well-suited for low analyte concentrations, is presented. The technique is based on multiscattering-enhanced absorption spectroscopy (MEAS) and benefits from the advantages of conventional absorption spectroscopy: simplicity, rapidity, and low costs. The technique relies on extending the optical path through the sensing volume by suspending dielectric beads in the solution containing the analytes of interest, resulting in multiple scattering of light, which increases the optical path length through the sample. This way, a higher sensitivity and lower limit of detection, compared to those of conventional absorption spectroscopy, can be achieved. The approach is versatile and can be used for a broad variety of analytes. Here, it is applied to the detection of phenol red, 10 nm gold nanoparticles, and envy green fluorescence dye; the limit of detection is decreased by a factor of 7.2 for phenol red and a factor of 3.3 for nanoparticles and dye. The versatility of this approach is illustrated by its application in increasing the sensitivity of colorimetric detection with gold nanoparticle probes and a commercially available hydrogen peroxide bioassay. The influence of different parameters describing the scattering medium is investigated in detail experimentally and numerically, with very good agreement between the two. Those parameters can be effectively used to tailor the enhancement for specific applications and analytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the cascade approach to the quantum multiscattering problem

The multiscattering problem is studied in the matrix density formalism. We study how to isolate the quasi-classical degrees of freedom in order to connect them with a cascade approach. The different problems that arise, as well as their possible solutions, are discussed and exemplified with a pion-nucleus model. PACS. 03.65.Nk Scattering theory – 24.10.Lx Monte Carlo simulations (including hadr...

متن کامل

A multiscattering series for impedance tomography in layered media

We introduce an inversion algorithm for tomographic images of layered media. The algorithm is based on a multiscattering series expansion of the Green function that, unlike the Born series, converges unconditionally. Our inversion algorithm obtains images of the medium that improves iteratively as we use more and more terms in the multiscattering series. We present the derivation of the multisc...

متن کامل

Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes.

The continuous measurement of uptake or release of biomarkers provides invaluable information for understanding and monitoring the metabolism of cells. In this work, a multiscattering-enhanced optical biosensor for the multiplexed, non-invasive, and continuous detection of hydrogen peroxide (H2O2), lactate and glucose is presented. The sensing scheme is based on optical monitoring of the oxidat...

متن کامل

Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms

Engineered nanomaterials (ENMs) are key drivers for the development of highly sophisticated new technologies. As all new attainments, the rapidly increasing used of ENMs raise concerns about their safety for the environment and humans. There is growing evidence showing that if engineered nanomaterials are released into the environment, there is a possibility that they could cause harm to aquati...

متن کامل

Plasmonic nanostructures for unifying surface enhanced Raman and Infrared Absorption spectroscopy by Janardan Kundu

Plasmonic nanostructures for unifying surface enhanced Raman and Infrared Absorption spectroscopy

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 87 3  شماره 

صفحات  -

تاریخ انتشار 2015